

 Abstract—Web services enable networked systems, typically

based upon the World Wide Web (WWW), and their related
services, to interoperate. Moreover, Service-Oriented
Architecture (SOA), Simple Object Access Protocol (SOAP),
Extensible Markup Language, Remote Procedure Call (XML-
RPC), and Representational State Transfer (REST) are
architectural styles of networked systems, upon which Web
Services are implemented. Given the growing dependence and
criticality of these services for users, fault tolerance plays an
increasingly important role in providing usable and reliable
services. With the advent of autonomic computing, or self-
managing computer systems, research groups have been
pursuing methods of combining fault tolerant autonomic
approaches with Web services. This paper reviews research and
progress to date of those autonomic methods and researches
Web services architectural style support of autonomic methods.

I. INTRODUCTION

The World Wide Web (WWW or Web) commenced in the
early 90’s and today consists of numerous networked systems
enabling interactive, shared communication [1]. As the public
inter-network evolved, website applications began
communicating with each other; this prompted the need for
shared programmatic interfaces [2]. Today, these
programmatic interfaces, or Web services, are at the
epicenter of a shift of the Web from websites and published
HTML-based pages to distributed services and applications.
This shift, labeled Web 2.0 [3], encompasses a wide range of
initiatives, which aim to deliver native, desktop application-
like capabilities directly from websites via Web-based
services.

However, as Web service technology has evolved, system
complexity and cost has increased as well. As evidence of
this trend, a Recovery Oriented Computing (ROC) group
released a study on the total cost of ownership (TCO) of
cluster-based services, which encompass Web services. The
study estimated that the ratio between software and hardware
purchases and other TCO factors (e.g., labor) was 3.6 to 18.5.
Moreover, a survey, also associated with the study, showed
that one third to one half of TCO was spent preparing or
recovering from failures [4], [5]. Because of these TCO
challenges, computing organizations have launched research
initiatives to study and design self-managing computing
mechanisms. The goal of self-managing systems is to reduce
information technology (IT) management and administration

©2007 Eric O’Laughlen. Permission to copy is hereby granted provided the
original copyright notice is reproduced in copies made.

costs.
One organization, dedicated to reducing IT and Web

service complexity and costs like the ROC, is IBM. In 2001
the company published a manifesto and announced its
autonomic computing vision [6]. The manifesto summarized
the state and called for systems and services that would
support self-correcting measures, including self-configuring,
self-healing, self-optimizing, and self-protecting ones.
According to the manifesto, self-configuring measures would
address system setup and configuration tasks. Self-healing
mechanisms would address fault tolerance and system
redundancy and availability. To address challenges related to
system operational efficiency and performance, self-
optimizing methods would assist. In the realm of hardened
security and system integrity, self-protecting methods would
improve current approaches. IBM’s vision for these
measures, collectively called self-CHOP [7] (Fig. 1), would
mask complexity and reduce cost for IT professionals with
sophisticated, adaptive technologies.

Fig. 1. Attributes of Autonomic Computing Initiative [8].

However, to obtain this vision systems would need to be
more knowledgeable of their internal and external computing
environment. With more awareness and knowledge, systems
could then differentiate between healthy and unhealthy
activity and take action, if necessary. However, before
contemplating more knowledgeable systems, there are also
stylistic considerations. Generally, Web services are based
upon principles of loosely coupled interfaces and underlying
technologies, commonly called a service-oriented
architecture (SOA). However, there are varying philosophies
of how to obtain loose coupling. For example, some
development groups advocate the use of an extensible
markup language (XML) protocol called SOAP (simple

Fault Tolerant Autonomic Computing in Web Services

Eric O’Laughlen
Professor Yashwant K. Malaiya, Department of Computer Science, Colorado State University

eric@olaughlen.net

object access protocol), which decouples interface methods
and other details from underlying protocols; however, others
argue in favor of the existing representational state transfer
(REST) style, which describes the architectural style of the
Web [9].

The purpose of this paper is to review autonomic
technologies and approaches, specifically self-healing ones,
involving Web services. With the review the paper also
examines the primary architectural styles of Web services
and how those styles affect autonomic approaches. Moreover,
the paper reviews industry progress with autonomic
initiatives. The motivation for the paper is to provide
informational aid to research groups and to contribute to
ROC-type group initiatives that improve reliability,
availability, and TCO in Web services. The organization of
the paper includes the following sections:

I. Introduction...1
II. Autonomic Computing ...2

A. Background...2
B. Self-Healing Terminology ...2
C. Autonomic Computing Architecture ...2
D. Autonomic Computing Toolkit ...3

III. Web Services ..4
A. Background...4
B. Service-Oriented Architecture ...4
C. Web Services Styles ...4
D. Representational State Transfer (REST)...................................4
E. REST Terminology And Web Services ..5
F. XML-Remote Procedure Call (XML-RPC)....................................5
G. Simple Object Access Protocol (SOAP)5
H. Web Services: Predominant Style ...6

IV. Web Services: Autonomic Challenges ...6
V. Web Services: Autonomic Progress...7
VI. Autonomic Computing: Future..8
VII. Research: Observations ..8
VIII. Conclusion ..9
IX. References...9

II. AUTONOMIC COMPUTING

A. Background
An autonomic computing system, or a self-managing

system, describes a computing system that is aware of itself
and of its environment; a system that can dynamically adjust
to its environment, if need be, like the human autonomic
nervous system or other biological systems [10]. Just as
biological systems obtain and maintain homeostasis, a
phenomenon within biological systems that strives toward
equilibrium and health, autonomic computing systems aim
for internal equilibrium regardless of external system changes
[11], [12]. Autonomic computing efforts work to embed
complex, adaptive technologies into computing systems in
order to reduce the manual management of that complexity.
As mentioned, IBM’s manifesto in 2001 prompted
heightened awareness in the field by summarizing the
complex and costly state of information technology and by
calling for systems and services that would support self-
correcting measures.

Although the manifesto and vision from IBM is relatively
recent, autonomic computing has its foundation in years of

science and technology evolution [13]; it drew, and continues
to draw, from numerous areas within science and the
industry. For example, hardware redundancy with disks,
specifically RAID, is one area. RAID solutions (i.e.,
redundant array of inexpensive, or independent, disks)
provide fault-tolerance and redundancy for disk drives and
were available years previous [14]. Furthermore, software
techniques, like virtualization and managed virtual machines,
have been used for many years to improve reliability and
availability of software services [15]. Although there are
myriad examples, the initiative was unique in that it focused
on interoperability of self-management technologies for
enterprise Web services.

Within the self-CHOP framework autonomic approaches
vary; however, Lapouchnian, Yu, Liaskos, and Mylopoulos
outline three basic paradigms for creating autonomic systems
[16]: isomorphic mapping of system behaviors to system
configurations, system planning and augmentation, and
evolutionary approaches like those found in biology.
Isomorphic configuration and behavior modeling
encompasses a requirements-driven approach to software
behavior, which they advocate. Autonomic approaches, that
utilize system planning and augmentation, delegate tasks to
autonomic elements, also called external, intelligent agents.
A biological approach incorporates theoretical approaches
from machine learning, robustness principles, and statistical
analysis to detect and determine appropriate actions and
corrective measures [7]. This paper’s research focus
technologies and models that use the latter two approaches.

B. Self-Healing Terminology
When discussing self-healing systems and self-CHOP,

many problems in each of the areas could be considered self-
healing in nature [17]. For example, if a particular system is
performing sub-optimal due to an incorrectly sized cache,
and an autonomic system identifies and modifies the cache
for better performance, the system self-healed the initial
problem. However, for this purposes of this paper’s research
the hypothetical scenario will not be considered a fault
tolerant, self-healing system, primarily because the system
continued to operate with or without the cache size
modification. The paper focuses upon self-healing models
and technologies that detect and remedy defects in hardware,
errors in software, and faults in operation in either hardware
or software [18]. Furthermore, since the research addresses
autonomic computing methods in Web services, there is an
emphasis on interoperable, software-based protocols and
techniques.

C. Autonomic Computing Architecture
Along with its autonomic initiatives, IBM published an

autonomic computing architectural blueprint [19] and
Autonomic Computing Toolkit [20], outlining a paradigm
and framework for problem determination and self-CHOP
capability. Although there may be other ways to enable
autonomic systems, as alluded earlier [16], since the toolkit
was the first of its kind [21], the research in this paper

focuses on its models and architecture. At the heart of the
blueprint and toolkit is concept of an autonomic element
(AE). An AE comprises of managed elements (or resources)
and autonomic managers that operate as a part of a Monitor,
Analyze, Plan, and Execute, control loop. The control loop is
commonly referred to as the MAPE cycle, or MAPE-K if
knowledge is emphasized (see Fig. 2) [8].

IBM envisioned that autonomic elements would be system
agents and that autonomic systems would consist of multiple
agents, or multi-agent-based systems, built upon Web
services or OGSA (Open Grid Services Architecture [22])
infrastructure [7]. There is one important aspect of
knowledge within the cycle: instead of using a definition that
implies only logical inference and compilation of new
knowledge from experience, IBM’s autonomic computing
defines knowledge as any structured data or information that
is a part of the system, which would include information
from system logs, from process state, and from scheduling
[23].

Fig. 2. Autonomic Element and MAPE model [19].

With this form of knowledge the control loop acquires
information about the computing resources, and external
environment, and then applies self-corrective algorithms as
necessary. Managed elements contain sensors to determine
states of the autonomic element and effect change in state, if
necessary, with the use of effectors. Autonomic elements
contain sensors and effectors as well in order to interact with
its environment [19]. Using the blueprint, IBM showed the
feasibility of the model by implementing a system for log
analysis and remediation. Using autonomic elements and

managers, and a common base event (CBE) format for
aggregating log information, the system could: communicate
and collect knowledge , characterize events, determine
problems, compare events against accepted policies, and
issue self-healing measures as necessary [8].

D. Autonomic Computing Toolkit
Using the MAPE-cycle, IBM released the Autonomic

Computing Toolkit in 2004. It was the first autonomic toolkit
released in the corporate world to introduce autonomic
computing to IT infrastructures [21], so the paper provides a
brief review of it. Before reviewing each component, it is
important to understand that IBM assigns autonomic
computing maturity levels to its solutions. There are five
levels total and they progressively work toward full
automation [20]:

• Level 1: Basic – requires staff for intervention
• Level 2: Managed – requires staff for analyzing

and planning
• Level 3: Predictive – requires staff for selecting

recommendations and implementation
• Level 4: Adaptive – requires staff for policies and

generate plans automatically
• Level 5: Autonomic – no staff required; system-

wide policy

The toolkit contains various components that operate
between maturity levels 2 and 3: an Autonomic Management
Engine (AME), the Generic Log Adapter (GLA), the Log and
Trace Analyzer (LTA) tool, and an Integrated Solutions
Console (ISC). There are other technologies; however, these
provide the majority of capability.

The AME includes capabilities for the MAPE-model
control loop and typically runs within a Java Virtual Machine
(JVM) and Web server (i.e., on the IBM WebSphere
platform). The GLA creates a touch-point for log-based data
and translates log messages into CBE format. The GLA
encompasses a client and server-side component that works
within IBM WebSphere products and an integrated
development environment (IDE) called Eclipse (see
eclipse.org), a client based utility. The LTA provides certain
MAPE functions by covering the analysis and monitoring
aspects; it requires Eclipse as well. The ISC provides a
mechanism to view events using IBM WebSphere Portal.
Each aspect aligns with an autonomic element and each
serves a purpose within the autonomic computing framework
(see Fig. 3) [20].

As a hypothetical example, the toolkit user guide describes
a situation where the toolkit and technology could be used to
report upon a database failure. If the database reports a
failure within a log (i.e., has stopped), then the autonomic
manager, along with other facets of the framework, could
issue a fault tolerant, self-healing action to restart the
database and product. Other examples of use include
solutions for automated installation and deployments, which
both have guides for further information [20].

Fig. 3. Autonomic Computing Toolkit and Functions [19].

III. WEB SERVICES

A. Background
In order to review autonomic computing mechanisms in

Web services and their effects, it is important to review the
evolution of the protocols and technologies that have led to
current Web service approaches. Web services evolved out of
a desire of Web communities to share data and services
between heterogeneous systems. With the advent of the
WWW, the underlying architecture was designed to be open
with publicly available specifications for implementation
[24]. Although the open nature of the global network
accelerated adoption and usage of the information system, it
was not initially designed to accommodate shared,
programmatic interfaces as imagined today. For example,
initial specifications did not provide standards for remote
service discovery, for certain service policies or contracts,
and for programmatic object binding and encoding. Web
service standards and technologies aim to address necessary
extensions.

B. Service-Oriented Architecture
A network-based architectural style is a coordinated set of

boundaries and relationships between elements. Network-
based architectural styles are not specifications; they are
constraints that classify how a networked architecture
behaves: how it processes data; how it connects between data
processors; how it manages state [25]. Similarly, a web
service architectural style encompasses a particular network-
based architecture while also determining boundaries
concerning its shared programmatic interface: what the
interface does and how the interface interacts. Web service
architectures vary; however, they share goals for loosely
coupled interfaces from implementations and for service-

component reuse. Furthermore, Web services leverage open
standards for network and data exchange for optimum
interoperability. Systems that adopt open network-based
architectural styles and embrace Web service goals are
labeled service-oriented architecture (SOA) [26].

C. Web Services Styles
Within a SOA-based Web service, multiple

complementary styles and specifications exist. However, as a
fundamental tenant, they all use the HTTP protocol for
transfers. Initially, XML provided a way to apply metadata to
text documents via HTTP in the late 90’s. Soon XML
specifications and technology evolved into the development
of XML-RPC (or XML remote procedure call); it enabled
Web sites to execute methods and to transfer simple data
objects. Eventually, the XML-based SOAP specification
evolved out of XML-RPC specifications and efforts [27].
These developments collectively lead to the Web service
specifications and styles that exist today: REST plus XML,
XML-RPC, and SOAP. The following sections review briefly
each approach. There are other derivative styles (e.g., the use
of Asynchronous Javascript and XML (AJAX)), but these
derivative styles still encompass fundamental approaches
from the other styles [28].

D. Representational State Transfer (REST)
Fielding coined the term Representational State Transfer

(REST) when he described the architectural style of the
WWW. He described the WWW as a virtual state-machine of
web pages in which users invoke (or click in browser
parlance) hyper-links to invoke state transitions. The REST
architectural style encompasses a number of constraints [25]
(see Table I). An important facet of the REST virtual state
machine involves the concept of a resource and its reference
by a universal resource identifier (URI). For example, when
one vis i ts a hypothet ical web page l ike
http://host/resource inside a WWW browser, the
resource retrieved represents a particular content type. The
content type of the resource may be a text-based article, a
raster graphic, a video encoded file, or some other digital
content type. However, the resource could also represent
varying content types within the same URI based upon
request parameters or metadata. In addition to this
multiplicity, each request and response invokes a stateless
transfer of information, independent of other transactions.
Although the REST style is not dependent upon a particular
protocol like HTTP, it represents ideals encapsulated within
protocol and the Web, of which Fielding was a contributor.
An important differentiator between the REST style and
other architectural styles relates to the constraints it defines:
REST promotes uniformity by method and resource
constraints while allowing multiple domain-based identifiers.
These constraints optimize the network-based system, while
also allowing extensibility of the underlying architecture.

TABLE I
REST CONSTRAINTS [25]

Term Definition
Client-Server - Separation of interface from data

storage
Stateless - Inclusion of all information necessary

to understand a request
Cache - Directives concerning stored copies of

resources
Uniform Interface - Software engineering generality and

uniformity between components
Layered System - Independence of hierarchy to improve

scalability and to reduce complexity
Code-On-Demand - Optional constraint that includes

expanded client capability through
downloadable code

E. REST Terminology And Web Services
Before comparing and contrasting REST to other Web-

based architectural styles, it is important to note that not all
Web service groups categorize REST-based systems the
same. For example, a system that utilizes HTTP cookies,

[Newton@eolaughlen /]telnet api.flickr.com 80
Trying 68.142.214.24...
Connected to www.flickr.vip.mud.yahoo.com.
Escape character is '^]'.
GET /services/rest/?method=flickr.test.echo&api_key=XX HTTP/1.0
Host: api.flickr.com

HTTP/1.1 200 OK
Date: Fri, 04 May 2007 01:06:27 GMT
Server: Apache/2.0.52
Content-Length: 149
Connection: close
Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<method>flickr.test.echo</method>
<api_key>XX</api_key>
</rsp>
Connection closed by foreign host.
[newton@eolaughlen /]

Fig. 4. Example REST-based transaction using Flickr Services (api_key
represented by XX instead of actual 32 hexadecimal-ASCII characters)

an HTTP header used to pass information about a client
connection, to maintain state may is strictly not REST-based.
Because a strict REST-based style requires statelessness.
However, since uniformity of interfaces and of other REST-
based constraints is followed, the system is classified as
REST-based, or RESTful. In other words, the classification of
REST may be based upon a bias and philosophy. Using a
REST-based philosophical classification, many Web services
offer REST-based programmatic interfaces using HTTP and
URIs for methods, query strings for method parameters, and
HTTP and XML (i.e., application specific) for method return
values. An example of a REST-based Web service call, may
be demonstrated using telnet and Flickr Services [29] and the
flickr.test.echo method (see Fig. 4). Each API (application
programming interface) on the service requires an
authorization token for use, called the api_key, which is left
out on purpose.

F. XML-Remote Procedure Call (XML-RPC)
XML-RPC is an XML-based protocol for executing

procedures over a distributed network, which is
conventionally used with the HTTP protocol and with Web-
based technologies and networks [30]. Basically, its goal is to
provide an easy protocol and mechanism to execute methods
within a Web-service and return a limited number of data
types: int, boolean, string, double, dateTime.iso8601, base64-
encode binary data, struct, and array. A simple example of an
XML-RPC message may be demonstrated using telnet and
the Flickr Service [29] with the flickr.test.echo method (see
Fig. 5).

[newton@eolaughlen /]telnet api.flickr.com 80
Trying 68.142.214.24...
Connected to www.flickr.vip.mud.yahoo.com.
Escape character is '^]'.
POST /services/xmlrpc HTTP/1.0
Host: api.flickr.com
Date: Fri, 04 May 2007 00:21:53 GMT
User-Agent: HelloWorld 1.0
Content-Type: text/xml; charset=utf-8
Content-Length: 350

<?xml version="1.0" encoding="utf-8" ?>
<methodCall>
<methodName>flickr.test.echo</methodName>
 <params>
<param>
<value>
 <struct>
 <member>
 <name>api_key</name>
 <value><string>XX </string></value>
 </member>
 </struct>
</value>
</param>
</params>
</methodCall>

HTTP/1.1 200 OK
Date: Fri, 04 May 2007 02:48:09 GMT
Server: Apache/2.0.52
Content-Length: 231
Connection: close
Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="utf-8" ?>
<methodResponse>
 <params>
 <param>
 <value>
 <string>
<api_key>XX</api_key>
 </string>
 </value>
 </param>
 </params>
</methodResponse>
Connection closed by foreign host.
[newton@eolaughlen /]

Fig. 5. Example XML-RPC transaction using Flickr Services (api_key
value represented by XX instead of actual 32 hexadecimal-ASCII
characters).

G. Simple Object Access Protocol (SOAP)
SOAP is an XML-based protocol to exchange structured

data with stateless on-way messages over a network,
typically with HTTP, but HTTP is not required for the
underlying transport [31]. In some Web-services groups
SOAP is synonymous with Web services [32]. Its origins
have root in distributed application technologies like
Common Object Request Broker Architecture (CORBA),
Distributed Component Object Model (DCOM), and Java
RMI (Remote Method Invocation). Although SOAP is a

message format for method invocation, that is more
analogous to protocols like Internet Inter-ORB Protocol
(IIOP) for CORBA [33], it was viewed as a mechanism to
standardize and popularize distributed computing
technologies over Web-based networks. A simple example of
a SOAP message, using HTTP, may be demonstrated using
telnet and the Flickr Services [30] and the flickr.test.echo
method (see Fig. 6).

[newton@eolaughlen /]telnet api.flickr.com 80
Trying 68.142.214.24...
Connected to www.flickr.vip.mud.yahoo.com.
Escape character is '^]'.
POST /services/soap HTTP/1.0
Host: api.flickr.com
Content-Type: application/soap+xml
Content-Length: 400

<?xml version="1.0" encoding="UTF-8" ?>
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema" >
<s:Body>
<x:FlickrRequest xmlns:x="urn:flickr">
<method>flickr.test.echo</method>
<api_key>XX</api_key>
</x:FlickrRequest>
</s:Body>
</s:Envelope>

HTTP/1.1 200 OK
Date: Fri, 04 May 2007 14:49:57 GMT
Server: Apache/2.0.52
Content-Length: 414
Connection: close
Content-Type: application/soap+xml; charset=utf-8

<?xml version="1.0" encoding="utf-8" ?>
<s:Envelope
 xmlns:s="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
>
 <s:Body>
 <x:FlickrResponse xmlns:x="urn:flickr">
<method>flickr.test.echo</method>
<api_key>XX</api_key>
 </x:FlickrResponse>
 </s:Body>
</s:Envelope>
Connection closed by foreign host.
[newton@eolaughlen /]

Fig. 6. Example SOAP transaction using Flickr Services (api_key value
represented by XX instead of actual 32 hexadecimal-ASCII characters).

H. Web Services: Predominant Style
Over the past few years, and even today, there is debate

about which style is better than another. On the one hand the
Web was modeled after the REST style, so there is little
disputing its scalability and extensibility. As such, REST
components point to its simplicity and to the Web’s success
in using it. Others point to the need for additional layers of
abstraction in order to transfer data structures, and ease of
implementation, like in XML-RPC. Large enterprise
infrastructure corporations, like Microsoft and IBM, continue
to encourage SOAP-based mechanisms as the appropriate
technology for programmatic interface abstraction and for
network transfer independence. However, what may be the
most telling are what architectural styles Web service
providers are providing in APIs (application binary
interfaces) and what developers are supporting. As observed
from a few researched, REST interfaces are supported by
most; however, SOAP is the second most supported (see
Table 2).

TABLE 2
WEB SERVICE ARCHITECTURAL STYLES

Web Service REST XML-
RPC

SOAP Other

Amazon [34] X X

Yahoo! Flickr [35] X X X

Ebay [36] X X

Google [37] X (*) X (*) AJAX

YouTube [38] X X

According to the information available, typically REST
and SOAP interfaces are both supported by the same vendor.
Which style and API a developer chooses, or should choose,
will likely be based upon the technologies and tools used for
integration (i.e., assuming there is choice of API). For
example, if one were using Microsoft or IBM technologies,
then SOAP may be a logical choice, given the tools and
development environment. However, if one is using another
development environment, and prefers an HTTP-based
interface, then REST would likely be a logical choice.
However, there is some evidence that developers prefer
REST to other styles [39].

IV. WEB SERVICES: AUTONOMIC CHALLENGES

There are numerous challenges when considering
autonomic computing and fault tolerance in Web services. If
one takes the log-based model of IBM as an example, there is
an old adage in IT circles: You cannot manage what you
cannot measure. One of the first challenges involves the
visibility of metrics and events within existing systems. With
the author’s experience within software engineering many
developers use assertions and other debug capabilities to
capture runtime errors. However, upon release of the
software these assertions and debug capabilities are
conventionally disabled, greatly reducing the amount of
information that is useful in diagnosis and remediation.
Retrofitting this information and autonomic capabilities into
an existing, or legacy, system may be problematic and cost-
inhibitive to do.

Furthermore, software error reporting is commonly either
sparse or crafted within a particular domain, the domain of
the engineer writing the code. If a reported problem is too
granular then it may not have any understandable context
outside of that domain. For example, a low-level domain
exception, like a network data transfer error, may not yield
anything useful within a global context base, for instance, of
an unplugged cable [10]. Moreover, even descriptive
messages of similar errors, within the same context, may look
different. For example a hypothetical example could involve
a programmers use of a system call to allocate memory.
When the allocation routine fails it may return NULL and set
an error code to NOMEM; however, the programmer may
log a non-descriptive message in a system log like: function()

returned NULL. The disparate error codes and messages
complicate visibility and interpretation.

In the scientific community there are various challenges as
well. Along with the need for standards to collect and to
aggregate data produced by a system, new models and
algorithms may be necessary to mine, analyze, and determine
appropriate action [7]. For example certain supervised,
machine learning models and algorithms for text-based
classification use iteration with trial and error in order to
converge upon a solution. Although extensive training may
be acceptable in some cases (e.g., where an eventual
threshold is obtained), in a dynamic computing environment
training and latency in obtaining a certain threshold may not
be feasible. Furthermore, configurations and parameters
change frequently, which may not be conducive to certain
machine learning models and algorithms as well [10]. Like
other text classification fields (e.g., mail and search), a
combination of statistical and adaptive methods may prove
most useful while research continues to surface new models
and approaches.

Another challenge, involving the entire industry, is
interoperability. Even if engineering and scientific groups are
able to solve significant challenges within their respective
fields, there is no guarantee that those solutions will be
interoperable. There are numerous examples of this outcome
throughout computing history including: network protocols,
digital rights management, operating system frameworks, etc.
Moreover, the interoperability challenges affect groups that
may not be considered autonomic in nature (e.g., security and
privacy) [10]. Solutions to interoperability will likely need to
be open, publicly available to computing groups, and will
likely need to be built collaboratively through consortiums.
One of the more successful methods of achieving
collaboration in recent years has been through the use of
standards groups involving industry leaders.

V. WEB SERVICES: AUTONOMIC PROGRESS

Since IBM’s manifesto and announcement, each major IT
provider today has its own counterpart. For example,
Microsoft Corporation supports autonomic capabilities with
its Dynamic Systems Initiative (DSI) [40]. Hewlett Packard
Development Company supports autonomic capability with
its Adaptive Infrastructure (AI) efforts [41]. Sun
Microsystems, Inc. supports self-management capabilities
within technologies with its N1 initiatives [13]. These efforts
show how the industry, and consumers, has embraced the
notion of reduced complexity and self-management with
autonomic computing concepts and technologies.

Not only has each forged autonomic initiatives, but also
each has been collaborating on future standards. For
example, a cross-company working group, that includes
Microsoft, HP, Sun, IBM, and others, recently submitted a
specification to the World Wide Web Consortium (W3C).
The specification for modeling Web services, called the
Service Modeling Language (SML) [42], proposes to make
descriptions and management of network and computing

assets easier. Its submission to the W3C aims to make the
specification open for public implementation and to make it
broadly adopted. The specification is based upon XML
Schema and Schematron in order model complex IT system
structures, constraints, and policies. Moreover, there are
numerous other industry standards available (see Fig. 7).

Individually, within corporative initiatives, there has been
progress as well. For one example, Microsoft Corporation
recently released a whitepaper reviewing its SDI
technologies. As a brief synopsis of their progress, Microsoft
created technology strategies, delivered ITIL-based
(Information Technology Infrastructure Library) guidance,
and worked with industry leaders in order to enable dynamic
systems. Moreover, they outlined dynamic systems features
in Windows Vista, Virtual Server and Virtual PC, and in
Visual Studio [40]. Microsoft is also incorporating SML into
Windows Server (now called Longhorn) along with other
dynamic systems technology slated for 2008.

Fig. 7. Web Services Standard [43].

HP released a report [41] indicating their progress on their
Adaptive Infrastructure initiatives while committing to
bringing lower-cost, automated, pooled data center to
customers. On the product side HP’s BladeSystem c-Class
for Microsoft Exchange Server improved reliability for e-
mail applications with automated virtualization and
provisioning technologies and tools. Moreover, with their
OpenView Enterprise Manager Starter Kit, a technology
organization may manage computing events for a holistic
view of service health. Also, according to the report, HP also
made progress with their Virtual Server Reference
Architecture and the Shared Infrastructure Utility for Test
and Development Offering.

As another example, IBM, since its manifesto, has engaged
multiple hardware and software-related autonomic initiatives.
On the hardware side, it created Active Memory as an
example, that uses parity checking and error-correction code
(ECC) algorithms to ascertain and fix problems. Furthermore,
the corporation fabricated CPU error detection and correction

techniques, which were incorporated into its Blue Gene line
of super computers [13]. On the software side, the eLiza
project, now a part of IBM’s Autonomic Computing initiative
[44], supported, and continues to support, various
mechanisms for fault tolerance and recovery with its IBM
Global Services Enterprise Workload Manager and
Electronic Server Agent software. These services and
solutions utilized error messaging and Internet-based
transfers to detect and remedy problems, using software and
hardware fault tolerant mechanisms.

VI. AUTONOMIC COMPUTING: FUTURE

IBM and other corporations and research groups are
making good progress on the vision of autonomic systems.
This is apparent in technical papers, toolkits, and proposed
standards, many available on the Web. However, there is
plenty of opportunity for further research, collaboration, and
improvement. As mentioned in the challenges of autonomic
computing, the same challenge surfaced during research for
this paper: visibility into Web service APIs for errors and
faults. When using the telnet program and the echo service to
invoke Web services calls, error messages were not always
helpful and descriptive. When encountering errors, error
codes typically had to be cross-referenced with available
documentation and forums, which was manually involved
and a little time consuming. Although some of these errors
were transient, and could be fixed permanently with testing
(e.g., using an incorrect key or HTTP method), some
problems would likely reoccur involving expired tokens or
invalid HTTP headers, etc. As some evidence of reoccurring
failures, a search for “SOAP and Flickr” via the Google.com
search engine produces a SOAP error message from the echo
service as its 7th highest result (see Fig. 8) [45].

<?xml version="1.0" encoding="utf-8" ?>
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope">
<s:Body>
<s:Fault>
<faultcode>flickr.error.0</faultcode>
 <faultstring>Invalid SOAP envelope.</faultstring>
<faultactor>http://www.flickr.com/services/soap/</faultactor>
<details>Please see http://www.flickr.com/services/api/ for more
details</details></s:Fault>
</s:Body>
</s:Envelope>

Fig. 8. SOAP error message from invalid SOAP method.

This one example, albeit small, seems to be a good
example of how a few changes could potentially produce an
autonomic type effect. Before delving into ideas, there
are—of course—changes that could be implemented
manually within current context. For example, in this simple
echo service case, the web crawler could obviously be
updated manually; however, recognizing proprietary error
codes in a plethora of SOAP calls is probably not practical.
Another manual option could encompass adding a robots.txt
f i l e t o t h e e c h o s e r v i c e s (s e e
http://www.robotstxt.org/wc/robots.html) in order to dissuade
crawlers from invoking the call or some other standard
crawling method. However, these are both manually

involved, when an automated one is preferred.

VII. RESEARCH: OBSERVATIONS

As with the echo example, problems surfaced concerning
the context and interoperability of the fault codes. One of the
goals for the exercise was to contemplate autonomic
computing mechanisms that could be used to automatically
handle Web service errors, along the lines of IBM’s
autonomic architecture, log adapters, and CBE format, etc.
While using the Flickr echo SOAP service, the same error
was received as the one supposedly received from the Google
search crawler [45]. The cause was eventually discovered as
an errant HTTP method, but the problem was not apparent
from the fault code or from the message within the SOAP
envelope. Although a simple example, and not entirely
indicative of complex, real-world scenarios, it is likely that
any log analyzer and monitor would require better error
information from the response before remediation.

Moreover, as each Web service provider was researched, it
was interesting to discover how each API supports a different
set of fault codes and descriptions for errors (i.e., outside of
the HTTP and SOAP defaults [46]). Although application
specific errors may be necessary, it seems advantageous for
Web service groups to define a common set of error codes
and messages across providers, much like errno and errno.h
provide context on Unix and Unix-variant operating systems.
Common definitions for errors and descriptions could aid
developers and assist groups in autonomic computing efforts
to handle certain error cases. In order to achieve an
interoperable effect, an XML namespace could be introduced
to cover a standard set of fault codes, fault types, and
descriptions (see Fig. 9). Once supported, certain conditions
could be detected and handle automatically.

<?xml version="1.0" encoding="utf-8" ?>
<s:Envelope xmlns:s=http://www.w3.org/2003/05/soap-envelope
 xmlns:err=http://host/2007/05/standard-errors
>
<s:Body>
<s:Fault>
<faultcode>err: Client.http.method.get</faultcode>
 <faultstring> Invalid Method </faultstring>
<faultactor>My specific detail </details></s:Fault>
</s:Body>
</s:Envelope>

Fig. 9. SOAP pseudo-code error message.

Another interesting facet surfaced when examining SOAP
errors within the echo service: out-of-sync return codes and
duplicity of errors. Although HTTP defines error codes for
methods not allowed and other server error messages, the
service would respond with an Invalid SOAP envelope, due
to a GET versus a POST HTTP method. Again, although a
simple example, and easily rectified, there is an additional
layer of abstraction and complexity added with SOAP
tunneled over HTTP. Given my experience with HTTP,
errors may be ambiguous, and any additional ambiguity with
tunneled protocols would seem to further complicate efforts
of interoperability and of autonomic initiatives. For this
reason it may be better to focus some autonomic research on
REST-based styles first before delving into SOAP-based

mechanisms. At the least, it seems worthwhile review
implementations of HTTP and SOAP return codes and
messages before applying autonomic algorithms. Along these
lines, the author suspects that if the error code inside of the
SOAP envelope for the Flickr echo service were in synch
with the HTTP error response code (i.e., instead of using
200-success for HTTP and a faultcode with SOAP), then the
response would not be indexed or cached by the Google
search engine, thus enabling an autonomic-type capability.

However, regardless of these observations, out of the three
architectural styles researched, there were two that surfaced
as the most likely candidates for additional fault tolerant
autonomic research: REST and SOAP. All the major Web
service providers studied provide REST, or REST like
interfaces, in their APIs. Furthermore, the second most
supported style was SOAP. Many Web service infrastructure
vendors provide support for SOAP; many Web services API
providers are supporting SOAP as well. Clearly, both styles
are important when concerning autonomic models and
technologies in Web services.

VIII. CONCLUSION

The paper reviewed autonomic computing initiatives,
technologies, and trends. Moreover, it studied Web service
architectural styles in order to gauge impacts on autonomic
computing research efforts. Overall, the industry is making
good progress on autonomic computing technologies, like
with IBM’s Autonomic Computing Toolkit, and with open
standard efforts, like the Service Modeling Language, which
involved multiple industry vendors. Furthermore, those
trends will have to continue to incorporate REST and SOAP-
based architectural styles. Perhaps SOAP will be the
preferred method for Web services for all APIs in the future,
but REST styles currently claim ubiquity across all publicly
available Web service providers researched. When
researching publicly available Web service APIs and
architectural styles, the author discovered an apparent need
for better standard error reporting within and across Web API
providers and for better synchronized error reporting between
protocol layers, which could aid in interoperability and in
autonomic approaches. Perhaps, in the future more research
can be spent in this area. Hopefully, the research contributed
to autonomic computing initiatives and aids those researching
the topic.

IX. REFERENCES

[1] T. B. Lee (1996, August). The World Wide Web: Past, Present, and
Future, par. 1 [Online]. Available: http://www.w3.org/People/Berners-
Lee/1996/ppf.html

[2] W3C Working Group Note 11 (2004, February). Web Services
A r c h i t e c t u r e , s e c t i o n 1 . 4. A v a i l a b l e :
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#whatis.

[3] T. O’Reilly (2005, September). What Is Web 2.0? Web As Platform
[O n l i n e] . A v a i l a b l e :
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-
web-20.html

[4] M. Salenhie, L. Tahvildari. Autonomic Computing: Emerging Trends
and Open Problems, DEAS 2005, St. Louis, MO. par. 2.

[5] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler,
et al. (2002, March 15). Recovery Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies. Computer
Science Technical Report UCB/CSD-02-1175, U.C. Berkley, pp. 1-2.
[Online]. Available: http://roc.cs.berkeley.edu/papers/ROC_TR02-
1175.pdf

[6] P. Horn (2003, January). Autonomic Computing: IBM’s Perspective on
the State of Information Technology [Online], p. 1, p. 17. Available:
http://www.research.ibm.com/autonomic/manifesto/autonomic_comput
ing.pdf.

[7] J. O. Kephart, D. M. Chess (2001, October) [Online]. The Vision of
Autonomic Computing, pp. 2-3, p. 5, p. 45, pp. 48-50. Available:
http://www.research.ibm.com/autonomic/research/papers/AC_Vision_
Computer_Jan_2003.pdf

[8] E. Mancel, M. J. Nielsen, A. Salahshour, S. Sampath K. V. L, S.
Sudarshanan (2005). Problem Determination Using Self-Managing
Autonomic Technology, p.5, pp. 195-198, pp. 306-309, p. 14. IBM
R e d b o o k s [O n l i n e] . A v a i l a b l e :
http://www.redbooks.ibm.com/redbooks/pdfs/sg246665.pdf

[9] E. Roch. (May 10, 2006) SOA versus REST Debate. [Online].
Available: http://blogs.ittoolbox.com/eai/business/archives/soa-versus-
rest-debate-9225

[10] J. O. Kephart, (May 2005) Research Challenges of Autonomic
Computing, pp. 15-16, p. 20-21. [ACM]. ICSE’05, St. Louis, Missouri,
USA.

[11] M. Shaw. Self-healing: Softening Precision to Avoid Brittleness.
Position paper for SIGSOFT WOSS ’02: Workshop on Self-Healing
Systems, pp. 111-113.

[12] M. Parashar, S. Hariri Autonomic Computing: An Overview. p. 248.
The Applied Software Systems Laboratory, Rutgers University, High
Performance Distributed Computing Laboratory, University of
A r i z o n a . A v a i l a b l e :
http://www.caip.rutgers.edu/TASSL/Papers/automate-upp-overview-
05.pdf

[13] L. D. Paulson (2002, August 2002). Computer system, heal thyself, pp.
20, par. 4. Computer (Volume 35, Issue 8) [IEEE Xplore].

[14] F. Hayes (2003, November 17). The Story So Far: The History of
RAID: Redundant Arrays of Inexpensive Disks turned out to be
expensive—but dependable. Computer World [Online]. Available:
http://www.computerworld.com/hardwaretopics/storage/story/0,10801,
87093,00.html

[15] D. Menasce (2005). Virtualization: Concepts, Applications, and
Performance Modeling. The Volgenau School of Information
Technology and Engineering [Department of Computer Science,
George Mason Universi ty] , pp. 10-11. Available:
http://cs.gmu.edu/~menasce/papers/menasce-cmg05-virt-slides.pdf

[16] A. Lapouchnian, Y. Yu, S. Liaskos, J. Mylopoulos. Requirements-
Driven Design of Autonomic Application Software. Proceedings of the
2006 conference of the Center for Advanced Studies on Collaborative
research (CASCON ’06). Department of Computer Science, University
of Toronto, p.1 2006.

[17] D. Garlan. (2003). Self-healing systems. CMU CS 17-811. Available:
http://www.cs.cmu.edu/~garlan/17811/Lectures/01-Course-Intro.pdf

[18] Y. K. Malaiya (2007). Fault Tolerant Computing (Colorado State
University, CS 530 DL). Introduction: Lecture 1 Notes. Slide 9.

[19] IBM Corporation (2003). An architectural blueprint for autonomic
computing, pp. 6, p. 10, pp. 10-11 [Online]. Available: http://www-
03.ibm.com/autonomic/pdfs/ACwpFinal.pdf

[20] IBM (2005, September). Autonomic Computing Toolkit: User’s Guide.
Available (3rd ed.), p. 2, p. 7, pp. 11-19. [Online]. Available:
ftp://www6.software.ibm.com/software/developer/library/autonomic/b
ooks/fpu3mst.pdf

[21] C. Preimesberger (2004, February 16). IBM releases first ‘autonomic’
SDK. NewsForge, Application Development Available:
http://www.newsforge.com/article.pl?sid=04/02/15/2354219

[22] The Globus Alliance (2007, May 6). Open Grid Services Architecture.
Available: http://www.globus.org/ogsa/

[23] B. Miller (2005, September 13). The autonomic computing edge: The
role of knowledge in autonomic system. Available: http://www-
128.ibm.com/developerworks/autonomic/library/ac-edge6/

[24] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee (June 1999). Introduction. RFC 2616: Hypertext Transfer
P r o t o c o l . [O n l i n e] . A v a i l a b l e :
http://www.w3.org/Protocols/rfc2616/rfc2616.txt

[25] R. Fielding (2000). Architectural Styles and the Design of Network-
based Software Architectures, 1.5 Styles, Chapter 5: REST. Ph.D.
dissertation, Dept. Information and Computer Science, UC, Irvine,
2 0 0 0 . A v a i l a b l e :
http://www.ics.uci.edu/~fielding/pubs/dissertation/software_arch.htm#
sec_1_5

[26] H. Hao. What Is Service-Oriented Architecture? [Online]. Available:
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html

[27] D. Winer (1999, September 25). Dave’s History of SOAP, [Online].
Available: http://www.xmlrpc.com/stories/storyReader$555

[28] G. Murray (2006, October 2nd ed.). Asynchronous JavaScript and XML
[O n l i n e] . A v a i l a b l e :
http://java.sun.com/developer/technicalArticles/J2EE/AJAX/

[29] Flickr Services (2007). Available: http://www.flickr.com/services/api/
[30] D. Winer (1999, July 15). XML-RPC Specification. Available:

http://www.xmlrpc.com/spec
[31] W3C XML Protocol Working Group. (2003, June 24). SOAP Version

1 . 2 P a r t 0 : P r i m e r , [O n l i n e] . A v a i l a b l e :
http://www.w3.org/TR/soap12-part0/#L1149

[32] F. Sommers (2003, March 17) Why Use SOAP? Choosing Between
SOAP and Application-Specific XML for Your Web Services.
Available: http://www.artima.com/webservices/articles/whysoap.html

[33] I. De Jong (2002, April 27). Web Services/SOAP and CORBA.
Available:
http://www.xs4all.nl/~irmen/comp/CORBA_vs_SOAP.html#2

[34] Amazon, Inc. Web Services (AWS) (2007, April 4). E-Commerce
S e r v i c e D e v e l o p e r G u i d e [O n l i n e] . A v a i l a b l e :
http://docs.amazonwebservices.com/AWSECommerceService/2007-
04-04/DG/

[35] Flickr Web Services API (unit of Yahoo! Incorporated) (2007, May 7).
R e q u e s t F o r m a t s [O n l i n e] . A v a i l a b l e :
http://www.flickr.com/services/api/

[36] Ebay, Inc. Developers Program (2007, May 7). Available:
http://developer.ebay.com/support/docs/

[37] Google Inc. Developer Network [Online]. Available:
http://code.google.com/

[38] YouTube. API Documentat ion [Online] . Available:
http://youtube.com/dev_docs

[39] T. O’Reilly (2003, April 3). REST vs. SOAP at Amazon [Online].
Avaialble: http://www.oreillynet.com/pub/wlg/3005

[40] Microsoft Corporation (2007). Dynamic Systems 2007: Get Started
With Dynamic systems Technology Today, pp. 3-6 [Online]. Available:
http://download.microsoft.com/download/C/3/C/C3CE985F-7C01-
4DB3-81EA-EE4A00E06B49/DSI_Overview.doc

[41] M. J. Turner (2006, September). HP Inc. and Summit Strategies, Inc.
HP’s Adaptive Infrastructure Initiative Powers Enterprise Business
P r i o r i t i e s , p p . 8 - 1 3 .
http://h71028.www7.hp.com/ERC/downloads/Summit_HP-Adaptive-
Infrastructure_Custom_09-21-2006.pdf

[42] D. Orchard, K. Wilson, K. Sankar, W. Adams, J. Bell, S. Holbrook, et
al., (2007, February 28). Service Modeling Language (SML): request
to W3C [Online]. Available: http://www.w3.org/Submission/2007/01/

[43] V. Tewari, M. Milenkovic (2006). Standard for Autonomic Computing.
Intel Technology Journal, Volume 10(4), p. 1. Available:
ftp://download.intel.com/technology/itj/2006/v10i4/v10-i4-art03.pdf

[44] IBM (2007, May 7). ELiza. Available: http://www-
03.ibm.com/servers/autonomic/

[45] “Flickr and SOAP” (2007, May 7). Google search query [Online].
Available:
http://www.google.com/search?client=safari&rls=en&q=Flickr+and+S
OAP&ie=UTF-8&oe=UTF-8

[46] R. Monson-Haefel (2004, February 6). SOAP Faults. Using SOAP
w i t h J 2 E E [O n l i n e] . A v a i l a b l e :
http://www.awprofessional.com/articles/article.asp?p=169106&seqNu
m=6&rl=1

